Preconditioned IterativeMethods for Two-Dimensional Space-Fractional Diffusion Equations

نویسندگان

  • Xiao-Qing Jin
  • Fu-Rong Lin
  • Zhi Zhao
چکیده

In this paper, preconditioned iterative methods for solving two-dimensional space-fractional diffusion equations are considered. The fractional diffusion equation is discretized by a second-order finite difference scheme, namely, the Crank-Nicolson weighted and shifted Grünwald difference (CN-WSGD) scheme proposed in [W. Tian, H. Zhou andW. Deng, A class of second order difference approximation for solving space fractional diffusion equations, Math. Comp., in press (arXiv:1201.5949 [math.NA])]. For the discretized linear systems, we first propose preconditioned iterative methods to solve them. Then we apply the D’Yakonov ADI scheme to split the linear systems and solve the obtained splitting systems by iterative methods. Two preconditioned iterative methods, the preconditioned generalized minimal residual (preconditioned GMRES) method and the preconditioned conjugate gradient normal residual (preconditioned CGNR) method, are proposed to solve relevant linear systems. By fully exploiting the structure of the coefficient matrix, we design two special kinds of preconditioners, which are easily constructed and are able to accelerate convergence of iterative solvers. Numerical results show the efficiency of our preconditioners. AMS subject classifications: 65F10, 65L06, 65U05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015